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In this dissertation, new digital image processing methods for hyperdimensional 

imagery are developed and experimentally tested on remotely sensed Earth observations 

and medical imagery.  The high dimensionality of the imagery is either inherent due to 

the type of measurements forming the image, as with imagery obtained with 

hyperspectral sensors, or the result of preprocessing and feature extraction, as with 

synthetic aperture radar imagery and digital mammography. 

In the first study, two omni-directional adaptations of gray level co-occurrence 

matrix analysis are developed and experimentally evaluated.  The adaptations are based 

on a previously developed rubber band straightening transform that has been used for 

analysis of segmented masses in digital mammograms.  The new methods are beneficial 

because they can be applied to imagery where the region of interest is either poorly 

segmented or not segmented. The methods are based on the concept of extracting circular 

windows s around each pixel in the image which are radially resampled to derive 

rectangular images. The images derived from the resampling are then suitable for 

standard GLCM techniques. The methods were applied to both remotely sensed synthetic 
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aperture radar imagery, for the purpose of automated detection of landslides on earthen 

levees, and to digital mammograms, for the purpose of automated classification of masses 

as either benign or malignant.  Experimental results show the newly developed methods 

to be valuable for texture feature extraction and classification of un-segmented objects. 

In the second study, a new technique of using spatial information in spectral band 

grouping for remotely sensed hyperspectral imagery is developed and experimentally 

tested. The technique involves clustering the spectral bands based on similarity of spatial 

features extracted from each band. The newly developed technique is evaluated in 

automated classification systems that utilize a single classifier and systems that utilize 

multiple classifiers combined with decision fusion.  The systems are experimentally 

tested on remotely sensed imagery for agricultural applications.  The spatial-spectral band 

grouping approach is compared to uniform band windowing and spectral only band 

grouping. The results show that the spatial-spectral band grouping method significantly 

outperforms both of the comparison methods, particularly when using multiple classifiers 

with decision fusion. 
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 CHAPTER I

INTRODUCTION 

1.1 Background 

A hyperdimensional image (HDI) is an n-dimensional dataset where two 

dimensions, usually referred to as [x, y], represent a physical space. Each [x, y] element 

represents a spatial location, while the remaining n-2 dimensions represent phenomena 

occurring per spatial location. For example, an HDI can be produced in the ways listed 

below. 

 An HDI can be produced by a sensor that simultaneously records a large 

number of measurements per spatial area, producing a large number of 

sub-images of the same area. For example: a hyperspectral camera 

measures optical radiance, resulting in a three dimensional image cube 

where [x,y] varies across physical space and [z] varies across the 

electromagnetic spectrum.    

 An HDI can be composed of a large number images of the same scene 

acquired by the same sensor at different times.   

 An HDI can be created by extracting a large number of spatially varying 

features from a smaller set of images of the same scene.   
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 An HDI can also result from multisource data, for example multiple 

sensors recording measurements of the same scene.  

Per-pixel processing is quite common for HDI. For example with hyperspectral 

imagery, many image processing techniques have been developed that exploit the spectral 

dimension on a per-pixel basis.  The focus of this dissertation is on algorithms that use 

spatial information to aid in the processing of HDIs. With synthetic aperture radar 

imagery, this dissertation introduces image analysis techniques that produce HDIs. With 

hyperspectral imagery for example, this dissertation introduces image analysis techniques 

that exploit both spectral and spatial information simultaneously in the DH. 

1.2 Hyperspectral Imagery 

One common source of an HDI is hyperspectral imagers. Thus it is useful to study 

hyperspectral techniques since many of the problems experienced are mirrored in other 

HDIs. Hyperspectral data first became available to the public for scientific use in the 

1990’s via the National Aeronautics and Space Administration (NASA) with their 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor operated at the Jet 

Propulsion Laboratory [1] and Compact Airborne Spectrographic Imager (CASI), 

manufactured by Itres Research Ltd. [2]. Hyperspectral imagery is becoming more 

commonly used in remote sensing applications. Hyperspectral sensors are typically 

passive instruments used to obtain measurements of electromagnetic radiation across a 

range of the spectrum for a given on-ground scene. The hyperspectral sensor records 

100’s to 1000’s of finely spaced, narrow frequency bands. This information can then be 

used to infer the chemical composition of the visible surfaces in the scene similar to the 

way lab spectrometers are used to measure the chemical composition of a sample. This 
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sort of information is very useful for target classification in many applications. A few 

applications in which hyperspectral imagery is useful include: 

 ecology, as in detection of invasive plant species or measuring and 

characterizing biomes; 

 agriculture, as in detection of plant stress caused by moisture, nitrogen 

deficiency, plant disease, or crop pests; 

 archeology, as in differentiating manmade and natural features, which aids 

in identification of potential archeological sites; and 

 land usage, as in determining the extent of agriculture, urbanization, and 

natural land cover. 

Hyperspectral sensors, however, have some drawbacks, such as over-

dimensionality and noise. Because of the high dimensionality in hyperspectral data, 

enormous bandwidth is required for transmission, large space is required for storage, and 

a large number of ground-truth samples are required for supervised target recognition and 

classification. Noise degrades the ability to measure the electromagnetic spectrum 

radiating from objects in the scene, and the noise primarily is caused by  sensor 

electronics and the Earth’s atmospheric effects. The hyperspectral signals can contain 

additional noise due to the sensor’s low spectral resolution, low spatial resolution, and/or 

limited dwell time.  Typically, noise is modeled using probability density functions 

(PDFs) [3]. Atmospheric noise typically results from the light being absorbed and 

diffused as it passes through the atmosphere. These effects are typically frequency 

dependent and reduce the signal strength as a function of frequency. Atmospheric noise is 

made more difficult to quantify and correct because the atmosphere is not homogeneous, 
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varying with altitude, location on the Earth, and time. Atmospheric correction techniques 

are available for the purpose of removing atmospheric noise. These techniques require 

certain atmospheric measurements that are input in to the process as parameters. 

However, when these measurements are not available or incorrect, the atmospheric 

correction may not eliminate the noise. Because of the noise in hyperspectral images, it 

can be extremely difficult to differentiate two targets that have similar spectrums using 

only the spectral information per pixel. 

There are two common approaches to object classification in a hyperspectral 

image. The first approach is to use the spectral information to classify each pixel 

independently, i.e. per-pixel processing. The advantage of this approach is that is 

relatively simple and does not require objects to be segmented. However, when there are 

objects with similar spectral signatures, this method can fail and produce classification 

maps with significant salt and pepper noise. This is because of the noise in the 

hyperspectral image and overlap of spectral signature distributions in objects with similar 

chemical compositions. The second common technique is to segment objects in the 

hyperspectral scene and then classify the objects based on their spectral information. The 

advantage of this technique is that it can use the spectrum from all the pixels within an 

object plus any additional spatial features obtained from the object such as size, shape, 

texture, etc. Typically this approach eliminates the salt and pepper noise in the 

classification maps, but it has the possibility of misclassifying an entire object if the 

segmentation performance is poor. 

Edge detection is one common and effective step in segmenting objects in images. 

Most edge detection algorithms key on discontinuities in the image to locate object edges. 
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Research [4] has shown that discontinuities in image brightness are likely to correlate 

with 

 discontinuities in depth, 

 discontinuities in surface orientation, 

 changes in material properties, and 

 variations in scene illumination. 

Such discontinuities generally correspond to the boundaries of objects. Furthermore, it 

has been shown that in color images, image intensity (or brightness) typically accounts 

for 90% of the edges in a scene, which means 10% of edges can typically only be 

detected using the color information in the image[5]. In hyperspectral images, the 

percentage of edges that are missed by image intensity is likely higher because there are 

many more spectral bands, and therefore, a larger space in which the signal energy can be 

distributed. Edge information also enables many other algorithms to be utilized in image 

processing. According to [6], a few algorithms that use edge information include 

 curve-based stereo vision, 

 contour-based image compression, 

 edge-based target recognition, and 

 edge-based face detection. 

While not all of these algorithms are necessarily applicable to the field of remote 

sensing, the techniques used in these algorithms could possibly be applied to problems in 

remote sensing. Within remote sensing, edge information has been used for 

 morphological feature extraction, 

 edge-based object segmentation, 
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 object-based classification, and 

 detection of linear objects. 

The problem with applying edge detection to hyperspectral images is that the 

definition of an edge in hyperspectral space is not intuitive. This is because 

discontinuities can have many different forms in a hyperspectral image, and noise can 

cause false edges to appear. Because of these difficulties, there have been few 

breakthroughs in hyperspectral edge detection.  

1.3 Contributions of this Dissertation 

This dissertation introduces two new image processing techniques that exploit 

spatial information in HDI analysis. Some of the experiments focus solely on 

hyperspectral image processing, but many of their conclusions can be applied to other 

types of HDIs. The primary contributions of this dissertation are as follows. 

1) Develop an omni-directional texture analysis technique that can be applied to 

objects that are poorly segmented or not segmented and apply it to HDI. 

a) Develop a technique that extends the concept of the rubber band 

straightening transform and gray level co-occurrence matrix (GLCM) 

texture features, such that the new technique does not require object edge 

information. 

b) Implement the newly developed technique in software. 

c) Experimentally evaluate its efficacy on real-world HDI.   

d) Compare the newly developed method to standard texture analysis 

techniques. 
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2) Develop a hyperspectral band grouping technique that concurrently uses spatial 

and spectral information and apply it to HDI. 

a) Develop a technique that utilizes spatial information, such as edges or 

textures, to guide a spectral band grouper and then uses the spatial-spectral 

band groups to extract features for classification purposes.   

b) Implement the newly developed methods and incorporate them in to 

automated classification systems, both single classifier and multiple 

classifier systems, in software. 

c) Experimentally evaluate their efficacy on real-world HDI. 

d) Conduct sensitivity studies to determine the robustness of the algorithm to 

design parameters, such as selected spatial filters, number of band groups, 

etc. 

e) Compare the newly developed methods to standard spectral band grouping 

techniques that do not utilize spatial information. 
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CHAPTER II 

CURRENT STATE OF KNOWLEDGE 

2.1 Edge Detection 

A reoccurring problem in hyperspectral edge detection is the difficulty of 

determining a mathematically precise definition of an edge. Instinctively, it seems to be 

globally understood that an edge is a boundary between two regions in the image and is 

usually characterized by a discontinuity. However, a widely accepted measurement of a 

discontinuity in a hyperspectral space does not exist. This particular problem is not 

present in gray level edge detection because it is defined as locations where the first 

derivative of the image forms coherent ridges [5]. This solution is not easily applied to a 

hyperspectral image because only partial derivatives can be computed in the 

hyperspectral space. However, one can use this definition and common gray level edge 

detection algorithms to serve as a foundation for algorithms that operate in higher 

dimensionality space. 

2.1.1 Conventional Gray Level Edge Detection 

Gray level edge detection is generally well understood. It typically involves four 

steps, which are: preprocessing, gradient detection, thresholding, and post-processing.  

In preprocessing of gray scale images, the goal is to denoise the image. Such 

noise usually comes from the sensor that collected the image. Types of noise that 
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typically occurs in images are white (Gaussian) noise, salt and pepper noise, and blurring. 

White noise is generally dealt with by using a low pass filter. The filter could be a 

neighborhood averaging filter, median filter, or a mode filter [1]. Although unnecessary 

in gray scale, in images of higher dimensionality, it might be useful to reduce the 

dimensionality of the image in the preprocessing step. 

In gradient detection, the objective is to measure how much the image is changing 

in a region around each pixel. Since the region around pixels located on edges changes 

more, the measured value will be higher for these pixels. In some edge detection systems, 

it is also necessary to know the direction in which the change is increasing. The 

measurement of change and the direction of change are referred to as the gradient 

magnitude and gradient angle, respectively. Generally these measurements are obtained 

by convolving a highpass filter with the image. There are two main types of filters used 

for edge detection: directional and non-directional. Directional filters are more common 

because a pair of such filters that measure the gradient in perpendicular directions can be 

used to estimate the gradient angle by computing the inverse tangent. In addition, the 

gradient magnitude can be measured by summing the result of both filters. Examples of 

such filters are Roberts [6], Prewitt [7], and Sobel [8]. Non-directional edge detectors are 

faster since they require one convolution pass because they can detect edges in any 

direction equally well. However, such filters may be too sensitive to noise, and, as 

indicated, provide no directional information. Common types of non-directional filters 

are Laplacian filters [1].  

The next step in gray level edge detection is thresholding the gradient magnitude 

information. While thresholding, which converts a continuous valued image into a binary 
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image by assigning values less than a threshold to 0 and values greater than the threshold 

to 1, is a simple process, the difficulty is in choosing the threshold value. The simplest 

way to choose a threshold is to manually select a value. This method is simple and can be 

very effective when objects in the image are smooth and distinct from each other. 

However, if these conditions are not met, the value must be tuned, and it may not be 

possible to choose a value that works for images taken under different conditions. Often 

the process of selecting a threshold is automated. Barrow and Tenenbaum [1] describe a 

technique where a gray level histogram is used. In this method, the value of the threshold 

is determined by the valley in the histogram between the non-edge pixels and edge pixels. 

In some cases, a single global threshold might not work because the brightness and 

contrast may not be constant throughout the image. In this case, adaptive thresholding 

may be used. One approach to adaptive thresholding is breaking the image into tiles or 

windowing the image, and then using an automated threshold selection technique [1]. In 

some cases the noise in the gradient information may be too great to get coherent edges 

even with adaptive thresholding. In such situations, local thresholding can be used to 

complete the edges. One such techniques is to use a lower threshold for pixels that are 

near edge pixels and have similar gradient angles to the edge pixels [1]. This is similar to 

region growing segmentation techniques, but in this case linear regions, which likely 

correspond to edges, are grown. Then there are numerous ways to choose this second 

threshold. Most of these are variations on the methods of choosing the main threshold. 

In the post-processing step, the binary image from the thresholding step is refined. 

Generally small gaps are filled in and unconnected edges, which were likely generated by 
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noise in the original image, are removed. The most common techniques for doing this are 

the Hough transform and morphological processing [1]. 

There are many papers written on edge detection using one channel, and it would 

be impossible to reference them all in a single document. However, the following is a list 

of a few relevant papers, and a brief description of what is significant in each paper. 

 In [9], filtering was done using wavelets by combining the edge detection 

results from several reconstruction scales. 

 In [10], a morphological technique that uses multiple directional structural 

elements and fuses the results is described. 

 In [11], a neural network was used to identify edges instead of the 

differential operator and thresholding. 

 In [4], a support vector machine was used to classify the pixels as edge or 

non-edge. 

 In [12], the results were inferior to several other techniques, but the 

authors used empirical mode decomposition instead of gradient operators, 

and then thresholded the first intrinsic mode function. 

 In [13], the decisions of multiple edge detectors were fused to get a final 

edge map. 

 In [14], adaptive thresholding was based on an edge reliability metric. 

 In [15], the authors use cellular neural networks to filter noise, quantize 

the image, and detect edges in remote sensed images. There is also a 

dilation and erosion step that does not use a cellular neural network. 
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 In [16], an adaptive threshold technique based on watersheds is 

introduced. 

2.1.2 Edge Detection with More than One Channel 

When there is more than one channel, edge detection becomes more difficult. The 

additional bands make a mathematical definition of an edge more ambiguous, especially 

as more and more channels are added to the image cube. One common way of dealing 

with this problem is to use dimensionality reduction to get a set of fewer features than the 

number of channels. There are many ways to do this. The drawback of dimensionality 

reduction is information loss as the number of available features is decreased. Thus, there 

is a tradeoff between having a low number of features and loss of information. 

Additionally, unless the number of features is reduced to one, standard gray level 

techniques still cannot be used. Thus, we still have multiple channels to deal with. One 

obvious way to handle multiple channels is to use gray level edge detection on each 

channel, and then combine the results. There are many possible ways to do this. 

However, the major drawback is that they often have lower signal to noise ratios than 

methods that consider all the channels concurrently. Perhaps the simplest way to combine 

the gradient information is to average the gradients for all the bands to get one gradient 

image. This can be done by averaging the horizontal gradients for all the channels, and 

then averaging the vertical gradients for all the channels. Then the averaged vertical and 

horizontal gradients can be used to compute a gradient intensity and angle similar to the 

way it is done in gray level edge detection. A second technique is to compute the gradient 

intensity and angle for each channel, and then averaging the result for all the channels. 

However, this method assumes that the gradients for all channels represent edge 
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information for the same objects. This may break down when an edge is invisible in some 

bands and visible in other bands. There are other ways to combine the gradients, such as 

adding, multiplying, or even more complicated techniques, but these are generally 

applied similarly to one of the two averaging techniques. Barrow and Tenenbaum [1] 

describe a technique for color edge detection, where the gradient magnitude is computed 

by the equation: 

 . 2.1 

The gradient angle is computed by: 

 tan , 2.2 

where 

 , 2.3 

and 

 . 2.4 

Though this technique is intended for color images, it is possible to extend this 

technique to any number of channels. Another strategy is to use all the channels 

concurrently. One way of doing this is to treat each pixel as a vector and compute the 

Euclidean distance between symmetric pairs of pixels around the pixel that the gradient 

information is being computed for. This will indicate the magnitude for  and , but 

it won’t indicate the sign of the gradient. However, the sign can be assigned to the 

horizontal and vertical gradients using some technique. One way to do this is to compare 
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the dot products between each side and the center pixel, then choose a sign based on 

which side has the largest values. Once the gradient angles and intensities have been 

determined, typically gray level techniques of thresholding and post processing are used. 

Though there are not as many papers on edge detection using multiple channels, 

here are a few examples. 

 In [17], manifold techniques were used to do dimensionality reduction on 

a hyperspectral image. 

 In [3], the edges were detected in HSV space by averaging gradient 

operators of two scales with varying direction. 

 In [18], fuzzy color membership of the pixels was computed in HLS 

space, and a measure of color difference called spread index was 

computed then thresholded. 

2.2 Hyperspectral Segmentation Techniques 

Segmentation does not require edge detection. In fact most hyperspectral 

segmentation algorithms do not use any edge detection. Segmentation algorithms that do 

not use edge detection typically fall into one of three categories. These categories are 

region growing, thresholding, and pixel-by-pixel labeling (possibly with post-

processing).  

In region growing, seed points are determined using some method, then a region 

is grown from the seed points by repeatedly adding the pixels along a border of the region  

as long as they conform to a growth criteria. The seed points could be determined 

randomly, or by some other method, such as selecting pixels that closely match a 

prototypical end member signature. Selecting seed points randomly implies the 
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segmentation is unsupervised, but the other method described here could be supervised or 

unsupervised depending on how the end members are chosen. The growth criteria can be 

very complicated, but simple ones could consider how similar the pixels on the border are 

to the seed point, or mean signature of the region. 

In the thresholding technique, regions are segmented out by thresholding some 

scalar (or possibly vector) quantity that is computed or extracted from the spectral 

signatures in the image. One common computed quantity used is Normalized Difference 

Vegetation Index (NDVI) [19], which could be used to segment vegetation. Sometimes, 

however, a subset of spectral bands could be thresholded also. Another algorithm that 

could be used in thresholding is the spectral angle mapper, which computes the angle 

between the pixels and an end member signature. The advantage of using the spectral 

angle mapper technique is that it is not affected by changes in light intensity. 

The third technique is to use the spectral information to label each pixel 

independently. This technique can produce excellent results under the right conditions, 

but if the distributions of the spectral signatures of multiple classes overlap, the resulting 

segmentations can have significant salt-and-pepper noise. In some cases, the researchers 

will use a post processing technique, such as mode filtering, to remove the salt-and-

pepper noise. 

A few relevant hyperspectral segmentation papers are listed below. 

 In [20], the authors used a spectral clustering algorithm to classify each 

pixel. The classification results are then considered the segmentation 

result. 
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 In [21], the paper describes a technique where spectral classification and 

spatial segmentation were recursively used to augment each other. 

 The authors of [22] use post processing of a classification map generated 

by a semi-supervised classification technique. 

 In [23], a region growing method where seed points were chosen using a 

spectral angle mapper with end members chosen manually. They also use 

a best band analysis approach that selects the best bands based on class 

variation. 

2.3 Feature Selection 

Feature selection techniques always fall into two categories: optimal and sub-

optimal heuristic. In the optimal category, there are exhaustive search and the branch-

and-bound algorithm [24]. In exhaustive search, the algorithm tests every possible 

combination of features and then selects the best combination based on some metric. The 

only variable of consequence in this technique is the metric. The branch-and-bound 

algorithm does not have to test every possible solution, but it requires that the accuracy 

must monotonically increase as the number of features increases. This is a situation that 

most often does not occur in large feature spaces because of the “curse of 

dimensionality.” Eventually, adding more features will degrade the accuracy. There are a 

great number of metrics that can be used, but that is not the focus of this dissertation, and 

thus it will be assumed that there is some metric that can be optimized by selecting a set 

of features, and this metric correlates positively to classification accuracy in the final 

classification system (the metric could be classification accuracy itself). The advantage of 

this technique is that it always finds the best combination of features that optimizes the 
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metric for any problem. The reason exhaustive search is not always used is that it cannot 

be run in polynomial time, and thus is a non-polynomial (NP) time algorithm. In fact, the 

algorithm is O(n!), which means that as n (the number of features) increases, the time it 

takes to run the algorithm quickly increases to the point that it is not feasible to use. 

In hyperspectral images and other hyperdimensional feature spaces, the number of 

features is too large for an exhaustive search to be used. Commonly used non-exhaustive 

techniques do run in polynomial time, and are therefore more feasible. However, they do 

not guarantee that the best set of features will be selected. Usually, a good set of features 

will be chosen. The most common feature selection techniques are the following [25], 

[26] and [1]. 

 Greedy hill climbing 

 Best first search 

 Simulated annealing 

 Genetic algorithms 

 Forward selection with backwards rejection 

There are several ways to improve feature selection algorithms, which has 

motivated many researchers to study many different algorithms. As a result, many less 

common algorithms have been tried. Most of these never get much attention beyond an 

introduction paper. A list of such algorithms is below. 

 In[27], a graph technique is used for feature selection. 

 Clustering is an approach that has seen sporadic use. In[28], the authors 

cluster features based on their values, and select a representative feature 

from each cluster. 
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 In[29], a biologically inspired algorithm based on the immune system was 

used for feature selection. 

 In [30], an algorithm based on ant colony optimization was used to select 

features. 

 In [31], an algorithm that chooses features based on rough set 

approximations was used to select features. 

 In [32], the authors select wavelet features using a forward selection 

technique that repeatedly chooses the band with the least mutual 

information with the selected subset. 

 In [33], another forward selection algorithm was used to select features. 

This time the information-theoretic optimality criterion was used to 

choose which feature to add to the selected subset. 

 In [34], the authors employ a simple manual feature selection technique by 

using a square window to select features from a 2D FFT feature space. 

2.4 Cellular Automata 

The human brain is exceptionally complex, but on a small scale, it acts like a 

cellular automaton (CA) in that each neuron has a set of neighboring neurons, and the 

state of a neuron is influenced by the states of its neighboring neurons. Furthermore, 

string theory, one of the leading candidates for the as yet unformulated “Theory of 

Everything,” proposes that the whole universe is in reality a discrete 10 to 11 dimensional 

space and what we experience is based on the state of vibrating strands of energy at every 

point [35]. If this is the case, then the whole universe is one massive CA. As far as a 
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computing model, CAs have fallen in and out of popularity since their inception by Von 

Neumann in the 1940s [36] because they can be a very powerful computing model. CAs 

derive their power from the fact that complex emergent behavior can emerge from the 

few simple rules each cell executes. This characteristic has ensured that CAs have 

received some attention in many different fields, and one day CAs may become the 

dominant computing model. However, they are still at the fringe of computing because 

they do not run efficiently on current general purpose computer, and it is prohibitively 

expensive to design new hardware for CAs that can do everything that a general purpose 

computer can do. 

2.5 Clustering 

Clustering is a technique that is used in of different fields as a tool for a vast 

number of problems. The two most common techniques are nearest neighbor (or 

agglomerative) clustering and K-means clustering [37]. However there are a number of 

variations of the two. Initially in nearest neighbor clustering, a threshold distance that 

represents the minimum distance between clusters is input, but the user does not know 

how many clusters will result. In K-means, the number of clusters is input, but the user 

does not know what the minimum distance between clusters will be. In general, K-means 

is a faster algorithm, but it does not guarantee the same results every time when the same 

input is given as nearest neighbor does. Also, in K-means, it is difficult to determine the 

best choice for the number of clusters, while in nearest neighbor, it is difficult to pick the 

minimum threshold. There are several techniques for making these choices, which have 

resulted in variations of these base algorithms. One variation of K-means is fuzzy c-

means clustering. 
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2.6 Texture Analysis 

Texture analysis is a very common technique in image processing. It is used in 

just about every application where image processing is used. The main goal of texture 

analysis is to measure some feature of the texture in the image or part of the image. There 

are a large number of ways to do this. One of the most common techniques is to use gray 

level co-occurrence matrices (GLCM). This technique is favored so much because it has 

the ability distinguish many types of textures. The basic strategy in GLCM is to create a 

matrix containing all the gray level combinations within the image or ROI with all pairs 

of pixels that have the same relative position. However, once the co-occurrence matrix is 

computed, there are a number of features that can be computed from the co-occurrence 

matrix. In "Texture Features for Image Classification," the paper that introduced the 

GLCM technique, the authors presented equations for calculating 14 different features  

[38]. These features are: 

1.  Angular Second Moment 

2.  Contrast 

3.  Correlation 

4.  Sum of Squares: Variance 

5.  Inverse Difference Moment 

6.  Sum Average 

7.  Sum Variance 

8.  Sum Entropy 

9.  Entropy 
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10. Difference Variance 

11. Difference Entropy 

12/13.  Information Measures of Correlation (2 formulas were presented) 

14. Maximal Correlation Coefficient 

Since this introductory article, new features have been added. In Digital Image 

Processing [5], two new features are defined, called maximum probability and elembent 

difference moment of order k. Also, angular second moment is renamed uniformity, and 

inverse difference moment is generalized. The GLCM technique has been used in a great 

number of applications. A few examples of papers that utilize gray level co‐occurrence 

matrices are listed below. 

 “A Max‐Min Measure for Image Texture Analysis” [39] uses the relative 

frequency of local extremes as the principal measure. 

 “Texture Segmentation Using Multilayered Back Propagation” [40]uses 

co‐occurrence matrices as inputs into a back propagation artificial neural 

network. 

 “Unsupervised Image Segmentation Based on a Self‐Organizing Feature 

Map and a Texture Measure” [41] uses co‐occurrence matrices as inputs 

into a self‐organizing map. 

 “Classification of Microcalcifications Using a Multichannel Filtering 

Approach” [42] uses the output of high pass and low pass filters as input 

to GLCM. 
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 “Textural Features Corresponding to Textural Properties” [43] introduces 

a technique called Neighborhood Gray Tone Difference Matrix (NGTDM). 

From this NGTDM, they present functions for computing coarseness, 

contrast, busyness, complexity, and texture strength. 

 In “A Comparative Study of Texture Measures for Terrain Classification,” 

[44] the authors compare several different types of features. These types 

of feature are Fourier power spectrum, second‐order gray level statistics, 

gray level difference statistics, and gray level run length statistics. 

 “Texture Features for Classification of Ultrasonic Liver Images” [45] uses a 

few common texture features, but also introduces features based on 

multi‐resolution analysis and a Brownian motion model, which assumes 

the texture is the result of a random walk. 

 “Generalized gray level dependence method for prostate cancer 

classification” [46] extends the gray level dependence (AKA. GLCM) 

method to work with multispectral data. 

 “Texture Image Segmentation Based on Gaussian Mixture Models and 

Gray Level Co‐occurrence Matrix” [47] introduces a texture segmentation 

technique that uses Gaussian mixture models and GLCM. 

 “Prediction of Cirrhosis Based on Singular Value Decomposition of Gray 

Level Co‐occurrence Matrix and a Neural Network Classifier” [48] uses 

two approaches to predict Cirrhosis based on ultrasounds. The first uses 

standard GLCM features, while the second gets the features from the co‐
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occurrence matrix by singular value decomposition of the co‐occurrence 

matrix itself. Both methods use artificial neural networks for 

classification. 

 “Chinese sign language recognition based on gray‐level co‐occurrence 

matrix and other multi‐features fusion” [49] uses several common GLCM 

features extracted for 0, 45, 90, and 135 degree angles. 

 “A New Method for Iris Recognition using Gray‐Level Coccurence Matrix” 

[50] segments a donut shaped region from the iris and straightens it out 

using a technique identical to Rubber Band Straightening Transform. 

Then standard GLCM features are used to identify the iris. 

 “Segmentation of Blood Vessels in Retinal Images Using 2‐D Entropies of 

Gray Level‐Gradient Co‐occurrence Matrix” [51] computes co‐occurrence 

matrices that combine the gray level of the image and the gradient level 

of the image by using gray level as the row index and gradient level as the 

column index into the co‐occurrence matrix. 

 “Texture retrieval using grey‐level co‐occurrence matrix for Ikonos 

panchromatic images of earthquake in Java 2006” [52] extracts texture 

features from Ikonos panchromatic images of the earthquake that 

occurred in Java in 2006. The features they extract are contrast, entropy, 

homogeneity, and energy. 

 “Gray‐Level Co‐occurrence Matrices as Features in Edge Enhanced 

Images” [53] solves a target recognition problem by first using a Sobel 
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edge operator to convert the image into a binary edge map with two gray 

levels, then GLCM features of the binary edge map are used to identify 

the targets. 

 “Directional Analysis of Texture Images Using Gray Level Co‐occurrence 

Matrix” [54] concedes that standard GLCM has a problem with its 

directional aspect. They attempt to find the best direction to analyze the 

texture using correlation. 

 “A New Method of SAR Image Segmentation Based on the Gray Level Co‐

occurrence Martix and Fuzzy Neural Network” [55] uses GLCM and 

wavelet features as inputs into a fuzzy neural network to segment objects 

in synthetic aperture radar images. 

Since the 1990s, wavelets have become a very popular tool in texture analysis, 

and there many papers on the subject. Digital Image Processing [5] goes into great 

detail in explaining them. Also, Fourier features are very common in texture analysis and 

have been around for a very long time. A description how to compute Fourier 

transforms is also in Digital Image Processing. When using Fourier transforms to extract 

features, a window has to be used so the features are extracted from a small ROI. 

“Texture feature based on local Fourier transform” [56] uses this technique to extract 

features from each pixel and its neighbors to analyze texture. 
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CHAPTER III 

OMNI-DIRECTIONAL TEXTURE ANALYSIS USING GRAY LEVEL CO-

OCCURRENCE MATRICES FOR OBJECTS THAT ARE POORLY  

SEGMENTED OR NOT SEGMENTED 

3.1 Introduction 

Texture analysis is useful in digital image processing because most natural 

surfaces are not uniform in pigmentation or height. There are almost an infinite number 

of variations in textures of natural objects. Thus texture can be very useful in identifying 

different objects because different objects tend to have different textures. As a result, 

texture analysis is a very common technique for many digital image processing tasks. It 

can be used in segmentation, classification, target recognition, or anomaly detection. 

Texture analysis is also used in many applications. These applications run the complete 

gamut of those for which image analysis is used. A few examples are medical imaging 

[1], robot vision [2], and remote sensing [3]. 

In texture analysis, the goal is to obtain statistics about the height variations or 

pigmentation distributions of a surface. Very rarely can this information be measured 

directly, and most often a region of interest (ROI) needs to be statistically analyzed in 

order to collect enough information about the surface. This means that a dilemma similar 

to the "Heisenberg uncertainty principle" is encountered. As the ROI’s size increases, the 

sample size for computing the texture statistics increases resulting in improved texture 
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statistics and improved texture specificity, but the certainty about the location of the 

texture decreases. Conversely, as the ROI’s size decreases, the certainty about the 

location of the texture increases, but the specificity of the texture decreases.  This is 

because texture is rarely uniform across in an entire image. Non-uniformity is present 

because there can be multiple objects in the image, or variations in light intensity or angle 

of incidence. 

As mentioned above, there is an almost infinite number of variations in texture. 

Some textures may have a constant directional pattern throughout the surface, such as in 

the rows of crops in a remotely sensed image of an agricultural field; some textures may 

have non-constant directional pattern, such as in ocean waves; then there are some 

textures that have no directional pattern, such as static on old television screens. One of 

the most common techniques for texture analysis is to use what is called gray level co-

occurrence matrices (GLCM) [4]. In this technique, the image is first quantized to reduce 

the number of gray levels in the image. next a rectangular ROI is analyzed by creating a 

2D histogram of the gray levels of all pairs of pixels in the ROI that have the same 

relative position. The 2D histogram is called a co-occurrence matrix. GLCM is very good 

at isolating textures from each other when they have different directional patterns or 

intensities in particular directions, and the direction of the patterns can be estimated. 

However, if the direction of the pattern is unknown or not constant, GLCM is not as 

effective. Typically, for omni-directional GLCM, one iteratively applies GLCM with 

varying position operators where the position operator's directional orientation varies. 

This approach is extremely computationally expensive, as the computation of the co-

occurrence matrix is very costly. Furthermore, the iterative technique produces an 
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overabundance of features, which then need to be processed in the feature selection and 

classification steps. Since there are a large number of textures that do not have 

predictable directions in their textures, there needs to be a more computationally efficient 

omni-directional GLCM technique. 

3.2 Methodology 

The omni-directional texture analysis technique proposed here is based on co-

occurrence matrices. Thus any feature that is calculated using co-occurrence matrices can 

be turned into an omni-directional feature. This is accomplished by altering the sampling 

pattern in the ROI. Before the co-occurrence matrix is computed, the image is typically 

quantized to reduce the number of gray levels. Typically, when a co-occurrence matrix is 

computed, a rectangular region is first sampled by using a raster scan pattern. Throughout 

the scan, two pixels are sampled using a pattern where the pixels have a constant relative 

position to each other described by the position operator. The values of the pixels are 

used as indexes into a two-dimensional matrix where a sum of all instances of each 

possible combination of pixel levels is kept. The size of the matrix needed to keep track 

of all possible combinations is m x m, where m is the number of gray levels in the image. 

After, the co-occurrence matrix is computed, the matrix is input into one or more of 

several possible functions that each compute a single feature for the ROI.  

The rubber band straightening transform (RBST) is a special method developed 

specifically for digital mammography by Sahiner et al. [5]. In the RBST, pixels around a 

segmentation border are remapped into a rectangular two dimensional array in order to 

allow GLCM features to be extracted from the RBST image. The remapping is 

accomplished by following the perimeter of the segmentation border and sampling along 
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lines perpendicular to the border as describe in detail below. Thus, the method is very 

dependent on the segmentation of the tumor. Unfortunately a precise boundary cannot 

usually be determined for objects such as mammographic lesions because the edges are 

very soft thus only gradually deviate from the background as they are approached. Most 

radiologist have a concept of what a lesion looks like but it is very difficult for them to 

express reproducibly precise boundaries around lesions. Thus, many computer aided 

diagnosis (CAD) systems require the radiologists to only provide loose approximate 

boundaries around the lesion from which a general ROI can be determined. However, 

there are many automated segmentation algorithms in the literature, which could 

theoretically produce reproducible boundaries around lesions as long as the parameters 

and inputs remain the same. Even so, arriving at precise boundaries remains elusive 

because conceptually, the boundaries around lesions and similar objects are ambiguous. 

The RBST algorithm is a very complicated technique, which first determines all 

of the pixels on the image border, and next numbers those pixels by progressing around 

the border in a clockwise fashion, and assigns an incrementing integer pixel label to each 

new pixel.  An offset parameter, K, controls estimation of the border normal at each point 

by determining which previous and following border pixels to use to estimate the normal. 

Let  ,k ki j   be the coordinates of the k-th border pixel and let ( )p k  and ( )n k  be the index 

of the pixel that is K pixels before (the previous pixel), and K pixels after (the following 

pixel) the current pixel, respectively. The coordinates of the previous and following 

pixels are given by  ( ) ( ),p k p ki j  and  ( ) ( ),n k n ki j , respectively. The line that joins these two 

pixels is used to determine the normal to the current pixel by finding the perpendicular 

extension to that line which is in the direction leaving the object of interest. Two other 
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parameters are used to control the radial distance used in evaluating the RBST. The user 

selects two radii, OUTR  and INR , which correspond to how far radially outward and 

inward, respectively, from each border pixel that the RBST image will be computed. The 

RBST is then generated by starting at INR  pixels inside the border, and traveling 

normally to the border and outwards to OUTR  pixels away, and placing the pixel graylevel 

encountered at these locations in the RBST image. Therefore, if there are bN  boundary 

pixels, the RBST image will be a two-dimensional matrix sized bN  rows by 

 1OUT INR R   columns.  Figure 3.1 below shows an example case with a segmentation of 

a mammographic mass, or lesion, shown as a black line. The figure also shows the area 

where the RBST is extracted from the image and the resulting RBST image. In this 

example, the inward and outward radii are OUTR  = 40 and INR  = 40, respectively, and the 

normal parameter K = 20.  

Once the RBST image is obtained, traditional co-occurrence matrix texture 

features can be extracted.  Clearly, the RBST is extremely sensitive to having an 

accurately segmented object edge. It is also clear that the RBST is computationally 

intensive.  Thus, we have developed two simplified straightening transform methods.  

The first method will be referred to as a simplified rubberband straightening 

transform (SRBST)  and assumes the existence of a circular ROI.  The method samples 

pixels on radial spokes from the center to the perimeter of the ROI (see figure 3.2). In this 

case,  ( ) ( ),p k p ki j  and  ( ) ( ),n k n ki j are much simpler to compute since the perimeter is a 

circle.  Also, the INR  and OUTR   parameters can be varied in a similar manner to the 

RBST, transforming a circular ring around the ROI to a rectangular image.  In addition, 
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INR  can be set to a value equal to the radius of the circular ROI. Thus the entire circular 

ROI is transformed to a rectangular image.  Since the sampled pixels are radial spokes of 

a circular ROI, the position operator is rotated as it moves across the ROI. Thus, if 

traditional co-occurrence matrix texture features are extracted from the SRBST image, 

the result is an omni-directional texture analysis method.  

Our second approach to the resampling is called the spiral straightening transform 

(SST) [1]. This technique, like the first, starts with a circular ROI. Instead of sampling 

the ROI in a radial spoke pattern, it is sampled in a semi-spiral pattern with evenly spaced 

samples progressing from the ROI’s center to its outer edge. (see figure 3.3). For 

computational ease, rather than actually computing a spiral path from the center of the 

ROI to its outer edge, we compute a series of R concentric rings, progressing from a 

small ring at the center to a large ring at the outer edge of the ROI.  For each concentric 

ring, a SRBST is computed, and then the R SRBST images are concatenated to form a 

final SST image.  Assuming INR  and OUTR  are constant, then the rth concentric ring 

results in a two-dimensional matrix sized Nbr  rows by  1OUT INR R   columns, and the 

final SST image is sized 

    (3.1) 
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(a)    (b) 

 
(c) 

Figure 3.1 Example case of rubber band straightening transform.  

(a) Mammogram showing lesion boundary in black. (b) RBST preimage in the original 
mammogram. (c) RBST image. [11]. 

 

Figure 3.2 Illustration of simplified rubber band straightening transform [1]. 
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Figure 3.3 Illustration of the spiral straightening transform (SST) [1]. 

 

While the SST takes longer to compute because the number of samples is 

proportional to the area of the ROI instead of the perimeter (as in the SRBST), it has a 

few advantages over the SRBST. Very often the target class in a classification problem 

has particular spatial frequencies in its texture. Since the spatial frequency of the samples 

is constant with the SST, it may be more suitable for problems where optimal spatial 

frequency of the sampling can be determined. However, if the optimal spatial sampling 

frequency cannot be determined, the SRBST might be better since the spatial sampling 

frequency varies. Also, the variable spatial frequency of the SRBST may make it more 

prone to classification errors for some problems. Another advantage to having a constant 

sampling frequency is that there will be more samples with the correct angle. This allows 

for a much larger sample for computing statistically-based texture features, and thus there 

is a better chance of detecting the target. 
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3.3 Applications 

There are many applications outside of image processing where directional 

transducers are preferred over omni-directional transducers because directional 

transducers can penetrate background noise better. Two common applications where this 

is the case are sonar and radar. In target recognition problems, omni-directional texture 

analysis will typically display this same behavior by producing a higher number of false 

positives than a directional texture analysis technique where the directional components 

of the texture are known and exploited. In cases where such knowledge is unavailable, 

omni-directional texture analysis may be the best option just as an omni-directional 

antenna is likely better than a highly directional antenna in cases where the direction to 

the source of a transmission is unknown. 

In some problems the target may have radial symmetry. In such problems, the 

omni-directional texture analysis technique used in this paper may be better because it 

samples a circular ROI. In such cases, using a directional texture analysis technique may 

produce more false positives than the omni-directional technique because the omni-

directional technique is better synchronized  with the target texture. The synchronization 

should even be tolerant of small errors between the center of the ROI and the center of 

the target because of the high correlation between the normal vectors toward circles with 

centers that are close together. This same phenomenon makes omni-directional texture 

analysis useful for targets that elliptical or other pseudo-circular shapes. 

3.4 Experiments 

In order to demonstrate the utility of the proposed straightening transform 

methods and resulting omni-directional texture analysis, two experimental analyses are 
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presented here. The first is a situation in which the target has radial symmetry, and the 

second is a situation in which the directional components to the texture are unknown. 

3.4.1 Breast Lesion Classification via Digital Mammography 

In the first experimental study, mammograms were analyzed to classify lesions as 

either malignant or benign. Current mammography technology typically produces high 

resolution 2D grayscale images of the internal structure of the breasts. Extremely high 

resolution is needed in order to have the ability to detect microcalcifications, which are 

tiny abnormal deposits of calcium that are associated with breast cancer. However, even 

if microcalcifications cannot be detected in the mammogram, other clues may be present 

in the shape and texture of lesions to indicate whether the lesions are malignant or 

benign. Spiculations are tentacle-like structures that radiate from the lesion and are often 

correlated with malignancy. These spiculations make omni-directional texture analysis a 

good fit for this problem because they represent radial features that are typically only 

present in malignant lesions. 

As discussed previously, it is a difficult task to get precise boundaries around 

mammographic lesions because the edges appear very soft. In the mammography 

community, the ambiguity has been resolved into three different classes of segmentation 

based on what is included. A segmentation that only includes the densest part of the 

lesion is called a core segmentation. The core in a lesion is distinguished by very little 

texture present because the density remains relatively uniform, and the density is 

typically at the extreme end of the gray scale. A segmentation that follows the boundary 

where the density begins to deviate from the normal background is called a periphery 

segmentation. The third segmentation type is the spiculation segmentation, which 
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includes the periphery as well as spiculations emanating from the lesion (if present). 

(Figure 3.4 shows a few illustrations of the different segmentations.) While the different 

types of segmentations appear to have solid conceptual definitions, it is important to note 

that normal breast tissue has many variations and structures that can mimic the 

appearance of lesions, and the breast is a 3-D object that is projected into a 2-D image, 

which means these structures very often overlap each other in the mammogram. Figure 

3.5 illustrates the difficulty of obtaining precise segmentations in real mammograms. It 

shows several different lesions along with the ROI determined by the radiologist and the 

results of two different periphery segmentation algorithms. Very often the segmentation 

results vary greatly when different methods are used or the parameters of a method are 

varied slightly. The difficulty in obtaining segmentations of course makes it very difficult 

to use RBST in a CAD system. 

 

Figure 3.4 Examples of segmentations.  

The first two on the left are examples of a periphery with a core segmentation. The last 
one on the right is a spiculation with a core segmetation. 
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Figure 3.5 Several DDSM cases (a-g) illustrating the difficulty of accurate 
segmentation.  

Left-to-right columns: Original mammogram image, contrast enhanced image, Level set 
segmentation enhanced image, contrast enhanced image with overlays of the DDSM hand 
drawn ROI (white line), level‐set segmentation developed by Ball et al. (black line) and 
Catarious segmentation (black and white dashed line). [11] 

 
(a) 

 
(b) 

 
(c) 

  
(d) 

 
(e) 

 
(f) 

 
(g) 
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The data used in this experiment was obtained from the University of South 

Florida (USF) Digital Database for Screening Mammography (DDSM) [10] and did not 

have the resolution necessary to detect microcalcifications in the lesions. The data did 

contain segmentations provided by experts in mammography. The segmentations were 

loose hand drawn approximately circular regions and also indicated whether the lesion 

was malignant or benign.  Figure 3.6 below shows all of the cases from the DDSM used 

in this experiment. Notice that there were a total of 60 cases with 30 malignant and 30 

benign. 

  



www.manaraa.com

 

44 

 
Benign 

 
Malignant 

Figure 3.6 Cropped DDSM case used in the study 
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The first step in the analysis was to use the expert ROI segmentations to extract a 

circular region with the lesion at the center. As indicated, the experts provided roughly 

circular regions. The circular ROIs were obtained by centering a circle at the centroid of 

the expert human segmentation with a diameter equal to the major axis of the expert 

segmentation. This virtually guaranteed that the ROI included all the regions segmented 

by the experts, and was likely centered close to the center of the lesion. Of course there 

may be possible segmentation shapes this approximation fails to produce desirable ROIs 

for, but it is likely easy to train a radiologist to make appropriate segmentations for the 

algorithm and a system could display the ROI so that corrections could be made if it is 

inaccurate. The second step is to use either the SRBST or SST to extract a co-occurrence 

matrix. This experiment diverged from the standard technique in that it used the raw 

values in the co-occurrence matrix as features instead of computing features from the co-

occurrence matrix. Thus there were typically a large number of features since the co-

occurrence matrix was size m x m, where m is the number of gray levels in the image. 

Thus if there were, for example, 256 gray levels in the image, there would be 65536 

features in the co-occurrence matrix. The large number of features necessitated the use of 

a feature selection technique, which in this case was stepwise linear discriminate analysis 

(SLDA). In the SLDA step, features were chosen to maximize either receiver operating 

characteristic (ROC Az) [9] or a metric described in the thesis called class overlap rating 

(COR). After the SLDA step reduced the number of features to a more manageable 

number, a classifier used the selected features to classify the lesion as malignant or 

benign. There were three classifiers tested for this step. They were nearest neighbor, 
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nearest mean, and maximum likelihood. Leave one out protocol was used to test the 

method. 

Previous studies using the DDSM database of digital mammograms have studied 

the use of the RBST. In [11], Ball conducted a study using the same set of DDSM 

mammograms that were used in this dissertation.  The goal of Ball’s study was to 

advance techniques for segmentation of mammographic masses.  He compared his newly 

developed segmentation technique (ALSSM) to a more standard approach developed by 

Catarious (CSM) [14]. Both segmentation methods were followed with a RBST, feature 

extraction and optimization, and finally a classification of the mammographic mass or 

lesion as either benign or malignant. The feature sets used in his study were extensive, 

including not only GLCM texture features, but also morphological features based on the 

normalized radial distance (NRD) and patient age. The result was a feature vector of size 

1031 (see table 3.1). Arguably however, patient age is the single most contributing 

feature to this type of computer aided diagnosis (CAD) system [16].  The feature 

reduction and classification methods employed were SLDA , ML, and K-nn, respectively. 

The results of his CAD system were overall accuracies in the range of 80-90% (see table 

3.2), when the design parameters were optimized.  When using patient age and 

morphological features alone, the results were in the range of 77-82%.  Thus, the RBST-

based texture features increased the overall classification accuracies by about 5%. In 

another study conducted by Gulsrud and Gabrielsen on a different set of data, where only 

GLCM features were used for classification (no age feature), an accuracy of up to 65% 

was obtained [17]. 
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In comparison, this study utilizes only the SRBST or spiral transform-based 

texture features (and not including patient age), which resulted in overall accuracies in 

the range of 70-72%, when the design parameters were optimized.  Thus, the SRBST and 

spiral transform approaches produce comparable results in terms of efficacy when 

compared to the RBST approach, yet the SRBST and spiral transforms do not require an 

accurate segmentation and are significantly less computationally expensive. 

Table 3.1 Summary of features used in John Ball's study. 

Feature Type and 
source  Features  Num. 

Features 

Patient age 
(DDSM)  Patient Age  1  

Morphological 
(SB)  

Area, Axis ratio, Box ratio, Circularity, Convex hull 
area, Eccentricity,  Equivalent diameter, Extent, 
Extent ratio, Major axis length, Minor axis length, 
Perimeter length, Solidity, Width to height ratio  

14  

Statistical (SB)  
Gray level mean, Gray level  std. dev, Gray level std. 

dev. ratio
3
  

3  

NRL (SB)  Entropy, Length, Mean, Roughness, Std. dev., Zero 
crossing count  6  

GLCM
 
 (SB)  Energy, Variance, Correlation, Inertia, Inverse 

Difference Moment, Entropy  144  

GLCM
 
(RBST)  Energy, Variance, Correlation, Inertia, Inverse 

Difference Moment, Entropy  864  

 

Table 3.2 Classification accuracy using John Ball's CAD system. 

Feature Set  
Overall Accuracy (%)  Number of False Negatives  

C  P  S  C+P C+S C+P+S C P S C+P  C+S  C+P+S 

B  83  87  88  82  90 90  4 4 5 7  4  4  
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3.4.2 Levee Landslide Detection via Synthetic Aperture Radar 

Earthen Levees protect large areas of populated and cultivated land in the United 

States from flooding. In the United States there are more than 150,000 kilometers of 

levee structures of varying designs and conditions. The potential loss of life and property 

associated with the catastrophic failure of levees can be extremely large [12]. Currently, 

there are limited processes in place to prioritize the monitoring of large numbers of dam 

and levee structures. There is a need to prioritize the monitoring of the network of dam 

and levee structures. Levee managers and federal agencies will benefit from any tools 

allowing them to assess levee health rapidly with robust techniques that identify, classify 

and prioritize levee vulnerabilities with lower costs than traditional programs not based 

on the use of remote sensing.  

This project required omni-directional GLCM because the directional components 

of the textures in the levee are unknown. This is because the orientation of the levee 

follows the path of the river, which varies greatly. This can be seen in figure 3.7, which 

shows one of the radar images used in this experiment. In the image you can see the river 

surrounded by bright wooded terrain in the middle of the dark agricultural terrain. 

Although, the levee is not visible in the larger image, it is a dark line that separates the 

wooded terrain from the agricultural terrain. This is because the soil in this area of the 

country is very fertile, so every bit that is protected by the levee is utilized in agriculture. 
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Figure 3.7 SAR image of the Mississippi River. 

 The images have been rotated so north is to the right. 

This experiment used L-band SAR data collected from JPL's UAVSAR [13] of 

the Mississippi River levee system between Vicksburg, MS and Clarksdale, MS. Each 

pixel has a spatial resolution of 6x6 m2. The instrument created separate backscatter 

intensity images for three different polarizations. These polarizations are HH, HV, and 

VV. The aircraft made two passes over the collection area. In the first pass, the plane 

traveled south to north with the sensor looking westward, and in the second pass, the 

plane traveled north to south with the sensor looking eastward.  
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The data was collected on June 16, 2009, which according to the National Ocean 

and Atmospheric Administration (NOAA) data was hotter than usual and was the 6th 

driest June since 1895 for that region [15]. Ground truth for landslides on the levees was 

obtained using optical imagery from the National Agriculture Imagery Program (NAIP), 

the Army Core of Engineers records, and this study’s researchers manually observing the 

levees. The landslides studied in this experiment were confirmed by at least two of these 

sources (see figure 3.8 below). 

For detecting landslides on the levees, we developed a supervised classification 

system that fuses texture information from the HH, HV, and VV polarizations for both 

passes. There are four main steps to the classification system. They are (1) compute a 

uniformly illuminated composite image from the six input images (HV, HV, and VV for 

both passes); (2) extract omni-directional texture features from the six input images plus 

the composite image; (3) select features and train a statistical classifier; and (4) classify 

the levee section using maximum likelihood classification. The following subsections 

detail each of these steps. 

One of the disadvantages of using SAR imagery for levee applications is that the 

image tends to be dim or in shadow on the reverse slopes of hills. Since an earthen levee 

is essentially a hill extended in a direction that parallels the river's course, it is difficult to 

collect imagery of both sides of a levee using a single pass with an airborne SAR since 

one side will be darker than the other. This was overcome by using data from two passes 

with the sensor looking in opposite directions at the target area to create a composite 

image. The first step in computing the composite image is to reduce the images from all 

the polarizations into a single grayscale image for each pass. This is done by computing 



www.manaraa.com

 

51 

the Euclidean distance of the vector 〈 , , , , , 〉 for each pixel , . Next, both 

of the grayscale images are normalized by subtracting the mean for each image and then 

dividing by the standard deviation. This step ensures that both images have the same 

intensity. Finally, the grayscale images are combined by selecting the maximum value for 

each pixel. Figure 5 shows the HH images for both passes and the composite for a subset 

of the levee section. 

 

Figure 3.8 Subset of levee. Left Image: Actual levee segment. 

Right Image: Mask segment. Green: landslide; Red: healthy levee. 

For the composite images, both directional and omni-directional texture features 

were extracted.  For the directional texture analysis, a standard GLCM was computed and 

texture features extracted.  For the omni-directional texture analysis, a SST was applied 

and then standard GLCM method was utilized with the SST image.  For each of the 

analysis techniques, a number of spatial operators were utilized, as well as a large number 

of features extracted from the resulting GLCMs.  As a result, a very large set of texture 

features results.  In order to determine which types of textural features were best, three 

different tests were performed. The first test used all the features available, the second 
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used only directional features, and the third used only omni-directional features. 

However, in each test, there were still a large number of features, so a dimensionality 

reduction technique had to be used. The authors of the study chose to use stepwise linear 

discriminate analysis (SLDA) [9] for the dimensionality reduction. After dimensionality 

reduction, a maximum likelihood classifier was used to classify each pixel in the subsets 

as either a landslide or a normal levee pixel.  

The accuracy was measured using two different methods. The first was to 

compute a standard pixel-by-pixel confusion matrix using the ground truth and the 

classification map output from the classifier. While being a standard approach, a 

confusion matrix does not account for spatial distribution of the classes in the 

classification map, and since landslides typically are larger than a single pixel, it is only 

necessary to detect a subset of the landslide pixels. Thus, for the second metric, 

contiguous regions classified as landslides are segmented and determined to be true 

positives if the region corresponds to an actual landslide. A region corresponds to a 

landslide if the center of the region is within a specified distance tolerance of the 

landslide. The tolerance is determined by the geo-registration accuracy of the SAR 

image, which is not constant because of foreshortening. 

Typically, pixels in SAR images possess a high degree of spatial correlation. 

Thus, randomly selecting pixels for training and testing from the same levee section can 

lead to deceiving conclusions about the accuracy of a technique since highly correlated, 

adjacent pixels may be selected for both training and testing. In order to avoid this, pixels 

for training and testing were always selected from different sections of the levee in a 

leave-one-out fashion with one section used for testing and the other levee sections used 
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for training the classifier. The three sections of levee used in this study were each 

separated by several kilometers with one on a different side of the river. Thus, spatial 

correlation between the training and testing pixels was negligible. 

In this study, the classification accuracy was determined using only standard 

GLCM, using only omni-directional GLCM, and using both types of features together. 

The confusion matrices for these three tests are shown in the tables below (3.3, 3.4, and 

3.5). Judging by the confusion matrices and pixel-by-pixel classification accuracy, there 

is little difference between the three approaches.  However, when the spatial distribution 

of the classification map is considered, it becomes clear that the technique that uses both 

types of GLCM features detects all four landslides and has fewer false positive regions 

(see Table 3.6). 

From the results, a general trend can be seen where standard GLCM produces a 

classifier that is more likely to reject (thus producing fewer true positives and fewer false 

positives), and omni-directional GLCM is more likely to accept (thus producing more 

true positives and false positives). When using both types of features, the classifier results 

are balanced between using one type of feature or the other. This allows the classifier to 

detect all of the landslides while producing fewer false positives than using omni-

directional GLCM only. One would expect that standard GLCM would be more selective 

because of its more directionally selective sampling and position operator, and thus have 

fewer false positives and true positives. The omni-directional GLCM is less selective, 

which helps it detect the landslides better but makes it more likely confused by similar 

textures that have a different directional element. In the levee experiment, the direction of 

the levees only varied by about 45 degrees, so the directional components to the texture 
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likely varied by about 45 degrees also. One would expect omni-directional GLCM to be 

most advantageous in cases where the directional components of the target texture vary 

by a full 360 degree range and when detecting all targets is more important than 

producing false positives. There are a great number of applications that fall in this 

category in geosciences and remote sensing. 

Table 3.3 Confusion matrix using standard GLCM only. [6] 

slide normal 

slide 38 83 0.31 

normal 73 3375 0.98 

0.34 0.98 0.96 

 

Table 3.4 Confusion matrix using omni-directional GLCM only. [6] 

slide normal 

Slide 26 95 0.21 

Normal 111 3337 0.97 

0.19 0.97 0.94 

 

Table 3.5 Confusion matrix using both types of GLCM [6] 

slide normal 

slide 51 70 0.42 

normal 146 3302 0.96 

0.26 0.98 0.94 

 

Table 3.6 True positives and false positives when contiguous regions classified as 
landslides are segmented.  

true positive false positive 
Standard GLCM 2 13 

Omni-Directional GLCM 4 36 
Both 4 22 

Note that there are 4 landslides, so a maximum of 4 true positives. [6] 
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3.5 Conclusion 

Two omni-directional adaptations of gray level co-occurrence matrix analysis 

were developed and experimentally evaluated.  The adaptations are based on a previously 

developed RBST that has been traditionally used for analysis of segmented masses in 

digital mammograms.  The new methods are beneficial in that they can be applied to 

imagery where the region of interest is either poorly segmented or not segmented. In 

brief, the methods are based on the concept of extracting circular windows around each 

pixel in the image (to compute local texture values) and the ROIs are radially resampled 

to derive rectangular images. The images derived from the resampling are then suitable 

for standard GLCM techniques. The methods were applied to both remotely sensed 

synthetic aperture radar imagery, for the purpose of automated detection of landslides on 

earthen levees, and to digital mammograms, for the purpose of automated classification 

of masses as either benign or malignant.  Experimental results show the newly developed 

methods to be valuable for texture feature extraction and classification of un-segmented 

objects.  

The omni-directional texture analysis technique described in this paper was 

shown to be useful in both remote sensing and medical imaging applications. As the 

levee example shows, omni-directional texture analysis may tend to get more false 

positives in some problems, but it will typically get fewer false negatives. This implies 

that omni-directional texture analysis will be better suited for problems where higher 

numbers of false positives are more tolerable than false negatives. Both examples 

presented in this paper are such cases, where false positives are more tolerable than false 

negatives. 
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These examples also demonstrate cases where the sampling pattern in omni-

directional analysis is a better fit with the textures present. In the levee example, the 

levees used in the experiment varied in orientation by about 45 degrees, so the directional 

components in the texture may not have varied enough to make standard GLCM useless. 

In such cases, using features from omni-directional and standard GLCM can provide 

good results. In the mammography example, the texture direction varied around the 

center of the lesions. Thus, omni-directional texture analysis was more useful than the 

standard texture analysis techniques. The omni-directional GLCM techniques used in this 

study are also more computational efficient than the standard approach since it only a co-

occurrence matrix to be computed once. 
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CHAPTER IV 

HYPERSPECTRAL DIMENSIONALITY REDUCTION USING CONCURRENT 

SPATIAL-SPECTRAL GROUPING 

4.1 Introduction 

Hyperspectral imagery (HSI) contains enormous amounts of information about 

the scene it depicts because of the large number of spectral bands. The huge amount of 

information can be very useful in extracting further information from the scene, such as 

classification, pixel unmixing, anomaly detection, etc. However, the amount of 

information can cause problems because it requires large data storage, significant 

processing resources, and high bandwidth to transmit. It has previously been suggested 

that clustering or grouping similar bands may be a way to deal with some of the 

requirements of HSI because bands with correlated spectral frequency tend to have 

correlated information [1]. HSI contains two types of features that can be used for band 

grouping (spectral features and spatial features). Commonly, band grouping has been 

done using only spectral information about the scene because of the poor spatial 

resolution common in many HSIs. Current spectral band grouping techniques can be 

broken into two different categories. These categories are supervised and unsupervised. 

Some examples of unsupervised spectral band grouping are uniform partitioning, 

correlation and mutual information. The supervised techniques often use two metrics: one 

to measure how similar the bands are, and the other to measure how well they distinguish 
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the classes. Two examples of supervised spectral band grouping techniques are 

Bhattacharyya Distance X Correlation and Jeffries Matusita X AMI [2, 11, 12]. In the 

past, hyperspectral images typically had spatial resolutions on the order of 30x30 m2, and 

thus, it was only feasible to use spectral information in band grouping. However, with the 

proliferation of HSI, images with better spatial resolution have become more common, 

and thus it is more feasible to use spatial features in analysis of HSI.  

4.2 Band Grouping 

As mentioned in the introduction, band grouping is way to deal with the high 

dimensionality of HSI. Band grouping works by placing bands into small groups so that 

the groups can be processed individually at some step in the analysis. It is useful because 

many of the bands in a typical HSI contain redundant information. There are a large 

number of ways to group bands together. Some of them are supervised and others are 

unsupervised. Once a band group has been determined, there are a limited number of 

strategies to use the band grouping. In classification problems, the strategy used is mostly 

determined by the classification technique, which can either be a single classifier or 

multiple classifier with decision fusion (MCDF) approach [3, 13-15]. 

In the case of a single classifier, usually a set of features fewer in number than the 

bands in the group are extracted from each group. This reduces the dimensionality of the 

problem and alleviates some of the problems associated with high dimensionality. 

However, care must be taken because at the same time the dimensionality is being 

reduced, useful information may be discarded. Examples of ways to extract the features 

from the groups are averaging (weighted or unweighted) the bands in the group, selecting 

one band to represent the group, Principal Component Analysis (PCA), and Linear 
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Discriminate Analysis (LDA). Once the features are extracted from all the groups, they 

can be input into a classifier. There are many classifiers that can then be used. 

In the multi-classifier approach there are more options for using the band groups. 

The most obvious option is to use individual classifiers for each group, and then fuse the 

results using a decision fusion technique such as majority vote or linear opinion pool 

(there are several other techniques) [4]. In this option, each classifier has highly 

correlated information that may allow it to sift through noise. The other simple option is 

to select different a different set of bands from all the groups for each classifier. Thus 

each classifier will have more diverse information. A third option, is to perform some sort 

of dimensionality reduction on the bands in each group and then feed the reduced features 

into the classifiers for each group. This is much like the single classifier approach except 

you use a classifier for each group. 

Grouping bands together has several advantages. The most obvious is that when 

each group is processed separately, there are fewer hyperspectral bands, and thus a lower 

dimensionality. This is especially apparent in the multi-classifier approach, but is also 

present in the single classifier approach because there are fewer bands to extract features 

from and the total number of features that need to be processed by the classifier is 

reduced. Band grouping may also identify particular bands that are less useful (or even 

completely useless) to the problem being solved. For example if a band is so different 

from the other bands that it is in a group by itself, it could mean that the band is not 

working properly or contains a high degree of random noise since a high degree of 

redundancy in adjacent bands of a HSI is expected. However, this may not always be the 

case, so care must be taken to ensure that such bands are truly useless before they are 
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discarded. Finally, organizing bands into highly correlated groups may make it easier to 

visualize the HSI because analysts may be able to concentrate on the features extracted 

from the groups instead of all the bands within them. 

4.3 Using Spatial Information in Spectral Band Grouping 

Spatial features have proven to be very useful in many classification problems 

that use other sensors beside HSI. One example is a project where the objective was to 

detect kudzu (Pueraria montana var. lobata), an invasive plant species in the southern 

United States that is originally from East Asia. Though only multispectral imagery was 

available, the investigators found that they could effectively distinguish kudzu from 

native vegetation because kudzu has an extremely smooth texture compared to the native 

vegetation. Figure 4.1 shows a false color image from the project with kudzu and natural 

vegetation. While HSI has a much greater spectral resolution than multispectral, noise 

often prevents it from being exploited to its full potential and often makes tasks that 

should be feasible in theory infeasible. Thus it may not be possible to distinguish one 

plant species (perhaps kudzu) from another (the native plants) because noise from the 

environment or sensor makes it impossible to detect the small differences in the 

spectrum. In many applications, it might help to combine spatial feature and with spectral 

features. 
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Figure 4.1 False color image showing kudzu (Pueraria Lobata).  

Kudzu is in the regions of bright red, smooth textures surrounded by the regions of rough 
textured forest  [16]. 

There are two categories of problems that will benefit from spatial-spectral band 

grouping. These are problems where shape is important, and problems where texture is 

important. In problems where shape is important, there may be good information in the 

spectrum, but shapes of regions should a defining (or extremely useful) feature to the 

problem. A few examples of hypothetical problems in which shape is important in 

classification are differentiating 

 roads and building/parking lots, 

 lakes, rivers, and canals, 



www.manaraa.com

 

64 

 crops and similar natural vegetation. 

In problems where texture is important, there again may be useful information in the 

spectrum, there should also be critical information in the texture of the objects. 

Hypothetical examples where texture is important are 

 identifying invasive species, such as kudzu, 

 detecting landslides, or perhaps even predicting them, 

 identifying places where erosion via water or wind has occurred, 

 detecting empty or fallow agricultural fields. 

Spatial and spectral features can be combined in several ways. The most obvious 

is to concatenate the spatial and spectral features together to produce one large (perhaps 

massive) feature vector. This feature vector can then be input into a classifier, which then 

uses training data to make a decision. While this solution is straightforward and simple to 

implement, it exacerbates the high dimensionality problem, which is already a potentially 

serious concern with HSI. When this exacerbated problem is then tackled using some 

feature set selection algorithm such as Stepwise Linear Discriminate Analysis (SLDA) 

[5], the system tends to disregard a significant amount of potentially useful information, 

plus choosing the best set of features is an NP problem. Another way spatial and spectral 

features can be combined is to use some mathematical formula to combine the spatial and 

spectral features to create composite features. This strategy is very similar to a technique 

called panchromatic sharpening, or pan-sharpening [10] and may be very useful in many 

situations. However, it can be very difficult and require a great amount of labor to 

determine a problem specific formula to use in compositing the features, and in the end, it 

could prove useless. A third way to combine spatial and spectral features is to use a tree 
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classifier [6]. Tree classifiers may be very useful in problems where spatial and spectral 

features are combined if some sort of dimensionality reduction can be done. However, if 

dimensionality reduction cannot be done, the decision tree may grow very large, and 

there may not be enough data to train every decision node. A final possibility is to use the 

spatial and spectral features in a band grouping algorithm [7]. As indicated above, band 

grouping is a very good way to handle high dimensionality because it breaks the features 

into smaller groups that can be handled independently. Furthermore, when band grouping 

is combined with spatial features, it has additional advantages. First, there are several 

problems where spatial features may be better at distinguishing bands from each other 

than spectral features. Second, even in cases where spectral information is good at 

differentiating bands, spatial information also usually tends to be very good in real 

images. Thus even in the problems where spectral features are best, there are usually 

spatial features that are not much worse. This is best illustrated in an experiment done in 

developing this paper where pecan trees were distinguished from background trees using 

band grouping with a multi-classifier approach. In the experiment, spectral features had a 

correlation matrix mean of .987, while spatial features had a correlation matrix mean of 

.954. The difference was due to higher values farther away from the correlation matrix 

diagonal, which means that there is the potential for larger groups. Both methods did 

extremely well with the spectral only band grouping technique getting an accuracy of 

99% and the spatial only band grouping technique getting an accuracy of 98%. It is 

important to note that the image had a 1 meter spatial resolution, so there was potential 

for good spatial features. Third, there are a large number of spatial features, so there is 

greater variety with using spatial features for band grouping. Thus, there is the potential 
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that suitable types of features can be found for the problem. Fourth, many spatial features 

contain some positional information about the scene that is not used in spectral only 

processing. Positional information such as what parts of the image have similar texture or 

spectral values is a very powerful way to distinguish bands from each other. 

4.4 Spatial-Spectral Band Grouping with a Single Classifier 

 The 2011 IEEE Workshop on Hyperspectral Image and Signal Processing: 

Evolution in Remote Sensing (WHISPERS) conference paper that introduced the idea of 

spatial-spectral band grouping goes into detail about using a single classifier [7]. 

However, for convenience the information is summarized and expanded on here. 

 In the case, where only one classifier is used, the purpose of the band grouping is 

to perform a dimensionality reduction of the feature space. Typically this is a lossy 

dimensionality reduction. Thus, grouping bands that are highly correlated is important to 

prevent excessive information loss in the dimensionality reduction. If the bands are 

highly correlated, then the information lost is more likely to be associated with noise in 

the image. Because of the problem with information loss, this technique is not useful in 

all situations. The advantages of this technique are that it is simpler than the multi-

classifier approach, it makes it easier to visualize the image since the image is 

summarized in a few features extracted from highly correlate bands, and the 

dimensionality reduction is unsupervised, which means that no training data is needed. 

The four steps in this method are listed below. 

1. Extract a spatial feature (or features) from each band in the HSI. The spatial 

feature can be a single value or multiple values arranged in a vector, 2D matrix, or 

even a higher dimensional feature. The possible dimensionality increase is not a 
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concern at this point since these features will possibly only be used to group the 

bands. There are a great number of spatial features that can be used in this step, 

and each feature is likely to yield slightly different band groups. The great number 

of potential features gives the technique great flexibility. A few examples of 

feature that can be extracted from a band are edges via a Prewitt or Sobel high 

pass filter [5], entropy via gray level co-occurrence matrix [5], and supervised 

threshold of the bands. One more feature that is not usually considered to be a 

spatial feature but is when positional information is used in the clustering step is 

the spectral values themselves. 

2. Cluster the bands based on the spatial features. This is the step where the bands 

are organized into band groups. Depending on the spatial feature extracted in the 

first step, it may be possible to utilize positional information in the clustering. If 

the original HSI has M spectral bands, positional information can be used by 

organizing the data in an M x N (N is the number of pixels in the image), and 

clustering the row vectors. There are several different clustering techniques that 

can be used in this step. Some such as k-means do not force contiguous band 

groups, while others do force contiguous groups. More research should be done to 

determine if one type of clustering is preferable than the other, but this is likely 

problem specific. Once band groups are determined by the clustering, the next 

question is what to put in the band groups to represent the bands. The original 

idea put forth in the WHISPERS paper was to place the spectral values for each 

band in the groups. This was the “spectral” part of the name “spatial-spectral band 

grouping.” However, there are more options than just the spectral values. If a 
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spatial feature (or set of features) is extracted for each pixel for each spectral 

band, the spatial features may be placed in the band groups. It is important to note 

that increasing dimensionality here is probably not a good idea because in the 

next step the dimensionality is reduced, and adding more features may make it 

more difficult to reduce the dimensionality especially if a supervised 

dimensionality reduction technique is use. If it is desirable to use both spatial and 

spectral features at the same time in classification, the number of groups can be 

doubled, and the spatial features used in half the groups and the spectral features 

used in the other half of the groups. In the multi-classifier technique, there is the 

option to place the spatial and spectral features derived from the same bands in 

the same groups together. Thus, the number of features per band group would be 

increased. However, there are problems with this idea in a single classifier 

situation. First, the spatial and spectral features are likely not to have the same 

scale, which could produce a large discontinuity and make it harder to reduce the 

dimensionality. Second, increasing the dimensionality within groups means that 

more training data must be considered if a supervised dimensionality reduction 

technique is used. 

3. Use the band groups to reduce dimensionality. In the single classifier approach, 

this is a very critical step in the algorithm. As indicated above, the dimensionality 

reduction is typically lossy, so it is important to choose a technique that preserves 

as much information as possible. This constraint may be alleviated if the bands in 

the groups are highly correlated, and if the bands are very highly correlated, the 

information lost may be associated with noise in the image. Two examples of 
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simple ways to reduce dimensionality of the bands are averaging the bands in 

each group and choosing a single band from each group to represent the group. 

These techniques are most likely to lose information than more complicated 

techniques, but they are very fast to implement and execute. More complex 

techniques can be done to avoid information loss such as Principal Component 

Analysis (PCA)[5], and Linear Discriminate Analysis (LDA) [5]. There are a 

great number of techniques that have been developed to reduce dimensionality of 

HSI that can be used in this step. It is important that the number of features 

representing each group be less than the total number of features in the groups, so 

that there will be fewer features used for classification in the next step. 

4. The final step is to use the features representing each group in some sort of 

classifier to get a classification. There are a great number of classifiers that can be 

used here because almost any classifier will work. In the research this paper is 

based on, maximum likelihood was always used because it is a simple and 

effective classifier to use. A few other classifiers that can be used are Support 

Vector Machines [5], Artificial Neural Networks [6], Nearest Mean, and Nearest 

Neighbor [5]. 

4.4.1 Examples of Spatial-Spectral Band Grouping with One Classifier 

 As indicated above one of the challenges with spatial-spectral band grouping 

using a single classifier is that data can be lost when reducing the dimensionality of the 

features in the groups. This challenge is shown in the example presented here. 

 In the example, the Indian Pines dataset was used. Indian Pines is a dataset 

available at the University of Purdue web site. It was obtained using the AVIRIS sensor 
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and has 220 spectral bands between 400 nm and 2500 nm. In the experiment, several 

different spatial features were compared to uniform partitioning , and spectral correlation. 

The spatial features tested were entropy computed by the gray level cooccurance matrix 

method, edge gradient computed using a Prewitt filter, and a supervised thresholding. 

After the groups were created, the dimensionality was reduced by averaging the spectral 

values for the band within the groups. This means that information was likely lost in 

dimensionality reduction. The classifier was a maximum likelihood classifier. The 

techniques were compared by varying the number of band groups and computing the 

average overall accuracy for each group number using 50 ensembles. In each ensemble, 

200 random samples were chosen from each class and 100 were assigned for training and 

100 were assigned for testing. This allowed the standard deviation to be determined also, 

which did turn out to be usually in the range of 1 to 2 percentage points. 

 The results for this example are summarized in figures 4.2a and 4.2b. The results 

are somewhat surprising because uniform partitioning was as good as any other band 

grouping technique and responded to Higgs phenomenon a little less than the other 

techniques. However, the data does not reveal a best method to use since the better 

techniques are within 1 to 2 standard deviations of each other at their best number of 

band groups. The lack of separation between techniques is likely because information 

was lost in the dimensionality reduction step, so the advantage in using the more 

advanced band grouping technique was lost. This result combined with the results with 

the multi-classifier approach illustrates the need to use a better technique for taking 

advantage of the band groups than simply averaging the features. There are many ways 

that the dimensionality reduction can be done that will represent the groups better than 
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averaging. Some examples are LDA and PCA, which get a weighted averaging of several 

features. Perhaps if a technique such as this were used, there would be more separation 

between the classes. 

 
A. 

 
B. 

Figure 4.2 Accuracy vs. Number of Clusters for single classifier.  

It is important to note that the spectral correlation technique malfunctioned for clusters 
less than about 5. 
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4.5 Spatial-Spectral Band Grouping with Multi-Classifiers 

 The steps in spatial-spectral band grouping with multi-classifiers are very similar 

to the steps in the single classifier algorithm except that each band group is the input to a 

classifier. The advantage of the multi-classifier approach is that there is no lossy 

dimensionality reduction. The steps for the algorithm using multiple classifiers are listed 

below. 

1. Cluster the bands based on a spatial feature extracted from the spectral bands. 

This step is identical to the first step in the single classifier algorithm. As in the 

single classifier approach, any gray level feature extraction technique can be used 

to extract the spatial features. The spatial features can be a single value for each 

band, a vector, a matrix, or even a higher dimensional feature. Different features 

will produce different clusterings. Thus, it may be useful to try different features 

for a problem because some features may work better than others. 

2. The next step is to group the bands based on the clusters attained from the spatial 

features. This is again very similar to the single classifier approach. However, 

there is one more option available when using the multi-classifier approach. As in 

the single classifier approach, the groups can contain the original spectral values 

or the spatial feature values. Test may determine that one set of features is better 

than the other for the particular problem. It is also possible to use both the spatial 

and spectral features together. In the single classifier approach the best way to do 

this is to concatenate groups containing spectral and groups containing spatial 

features together. This doubles the number of groups, which may or may not be a 

good thing depending on the number of training samples and problem specific 
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factors in the single classifier approach. In the multi-classifier approach, the 

problem with increasing dimensionality is not as severe since there are fewer 

features that need to be considered by any classifier. A further advantage of using 

multi-classifiers is that the spatial features extracted from the bands in each group 

can be combined with the spectral features within each group. That is, the spatial 

and spectral features can be interleaved. In the single classifier approach, this 

caused problems because the dimensionality was increased in each band group, 

which was contrary to the final objective. However, in the multi-classifier 

approach, there is less of a problem if there is enough training data to support the 

additional features in the groups. Furthermore, it may be beneficial to process the 

spatial and spectral features together since they are definitely related. 

3. The third step is where the difference between using a single classifier and 

multiple classifiers becomes most apparent. In this step, the bands in each group 

are processed by a classifier. Each band gets its own classifier. It is also possible 

to use multiple classifiers per group, but this has never been tested, so the utility 

of such an approach is unknown. The classifiers can be any type of classifier. 

Some common examples are maximum likelihood, nearest mean, nearest 

neighbor [5], support vector machine [5], and artificial neural network [6].   

4.  In the final step, the classification results of each of the classifiers are fused 

together. There are many different ways to do this decision fusion. A few 

techniques are majority vote, linear opinion pool, and log opinion pool [2]. There 

are many more different techniques available, so the researcher will have to 

determine which one is best for the problem. 
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Figure 4.3 Flow Chart of MCDF Strategy.  

The spectrum is broken into band groups which then are input into a classifier. The 
classifier optimizes the features using training data and makes a decision based on the 
input. The output from the classifiers are then fused into a single label. 
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4.5.1 Examples of Spatial-Spectral Band Grouping with Multiple Classifiers 

 

Figure 4.4 Image of Indian Pines data set. 

 

Figure 4.5 Image of Pecan 1 data set. 

 
In this section, two data sets that benefit from the use of spatial-spectral band 

grouping with multiple classifiers will be discussed. One is the Indian Pines data set (see 

figure 4.4) [8], which was collected by researchers at Purdue University, and the other 

data set was collected by researchers at Mississippi State University on a test plot called 

Pecan 1 (figure 4.5). Indian Pines has a spatial resolution of about 4 meters, and was 
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captured by AVIRIS. There are 220 spectral bands ranging from 400 to 2500. There are 

several fields in Indian Pines that contain corn, soybeans, oats, hay and wheat. There are 

a few other classes that have been segmented. These include grass, buildings, roads, and 

woods. The researchers were studying different tilling practices for the corn and 

soybeans, so there are three different tills for each and the image was captured while both 

were just sprouting. Pecan 1 contains a single field with 1 meter spatial resolution. It was 

captured using a SpectIR sensor, which has 128 spectral bands ranging from 400 to 994 

nm with a nominal spectral resolution of 5nm. The original intent of Pecan 1 was to study 

detection of herbicide in corn crops, so transects of the field were treated with one of 7 

different concentrations of herbicide. Though both of the data sets were originally 

intended for agricultural research, they have significant differences. In Indian Pines, the 

spatial resolution was about 4 meters, but in Pecan 1, the spatial resolution was about 1 

meter. Thus Pecan 1 should have much better texture information. Indian Pines however 

covers more area than Pecan 1, which covers just one field, so it has more diverse spatial 

features. Indian Pines was collected very shortly after the crops were planted, and thus 

the crops are just sprouting, but Pecan 1 contains mature crops. 

 The multi-classifier approach described above was used for both data sets. The 

spatial feature used in the clustering part was entropy, which was calculated using the 

gray level co-occurance matrix technique [9]. The radius of the region of interest (ROI) 

around the pixels was varied to determine the best size. Using a small ROI results in 

more localized measurements of the texture that is characterized by more noise, while 

useing a larger ROI results in less noisy texture measurements, but the information is less 

localized. Since both traits are highly desirable, there is an optimal radius that is 
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dependent on the quality of the texture information and spatial resolution of the HSI. In 

addition to varying the radius of the spatial feature, the features used by the classifiers 

was varied. As indicated in the second step of the method, the features used by the 

classifiers can be the spectral features or the spatial features. Furthermore, both types of 

features can be used simultaneously either by forming additional groups containing the 

spatial features, or by integrating the spatial features into the corresponding spectral 

feature groups. In the case of both datasets, maximum likelihood was used for 

classification because it is commonly used in the remote sensing community, is simple to 

implement, and provides a good baseline comparison for other techniques. The classifier 

outputs for all the groups were fused using a simple majority vote. The final decision 

accuracies were compared to the results using a uniform partitioning and a common 

unsupervised band grouping technique called spectral correlation band grouping. In all 

cases, the number of band groups was forced to be 5. Since there were four different radii 

and four ways the spectral and spatial features were used in this study, 16 sets of results 

were obtained. A summary of these results is provided below.  

4.5.2 Indian Pines Data Set Results 

 The Indian Pines results reveal two major trends. The first trend is that spatial-

spectral band grouping, as compared to uniform windowing and spectral band grouping, 

consistently produced the best overall accuracy in every configuration. The best overall 

accuracy (77.40%) for the Indian Pines data set was obtained using a 9x9 ROI using both 

the spatial and spectral features independently in their own groups (see table 4.1b). The 

overall accuracy using uniform partitioning was significantly lower than spatial-spectral 

band grouping techniques at 70.49% but was higher than the spectral correlation 
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technique which obtained 67.06%. The second trend reveals that the multi-classifier 

system is slightly sensitive to whether spectral and/or spatial features were used. On 

average, using spatial and spectral features independently in separate groups produces 

slightly better overall accuracy (on average it is 76.26%). The average overall accuracy 

of using only the spectral features is second at 75.62%, which is followed by using the 

spatial and spectral features in the same groups at 75.33%. Using spatial features had the 

worst average overall accuracy at 73.55%. 

Table 4.1 Average confusion matrices using maximum likelihood classification, 
majority vote decision fusion, and 100 training samples per class. 

 
corn‐
no till 

corn‐
min till 

soybeans‐
no till 

soybeans‐
min till 

soybeans‐
clean till 

grass/ 
trees 

woods 
 

corn‐no 
till 

69.4  9.6  9.2  6.5  4.8  0.5  0 
69.4
% 

corn‐min 
till 

8.8  74.6  2.2  7.3  7.1  0  0 
74.6
% 

soybeans‐
no till 

10.5  2.2  71.1  11.5  3.5  1.2  0 
71.1
% 

soybeans‐
min till 

15.4  17.7  16.1  41.2  8.6  1  0 
41.2
% 

soybeans‐
clean till 

5.4  7.6  0.5  1.3  84.6  0.6  0 
84.6
% 

grass/ 
trees 

0.1  0  0.8  0  0.1  98  1 
98.0
% 

woods  0  0  0  0  0  2  98 
98.0
% 

 
63.5
% 

67.0%  71.3%  60.9%  77.9% 
94.9
% 

99.0
% 

76.7
% 

A. 9x9 entropy spatial feature for clustering with only spectral features used for 
classification. 
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Table 4.1 (continued) 

 
corn‐
no till 

corn‐
min till 

soybeans‐
no till 

soybeans‐
min till 

soybeans‐
clean till 

grass/ 
trees 

woods 
 

corn‐no 
till 

71.3  5.9  10.5  6.2  5.3  0.8  0 
71.3
% 

corn‐min 
till 

7  71.7  1.8  11.1  8.3  0.1  0 
71.7
% 

soybeans
‐no till 

11.4  1.5  73.1  9.8  2.9  1.3  0 
73.1
% 

soybeans
‐min till 

13.6  10.7  18.5  44.3  12  0.9  0 
44.3
% 

soybeans
‐clean till 

4.8  6  1.3  1.7  85.2  1  0 
85.2
% 

grass/ 
trees 

0  0  0.6  0  0.1  97.9  1.4 
97.9
% 

woods  0  0  0  0  0  1.7  98.3 
98.3
% 

 
66.1% 

74.9
% 

69.7%  60.77%  74.9% 
94.5
% 

98.6
% 

77.4
% 

B. 9x9 entropy spatial feature for clustering with spatial and spectral features used in 
independent groups for classification. 

 
corn‐
no till 

corn‐
min till 

soybeans‐
no till 

soybeans‐
min till 

soybeans‐
clean till 

grass/ 
trees 

woods 
 

corn‐no 
till 

63.8  10.4  12.2  9.2  3.9  0.5  0 
63.8
% 

corn‐min 
till 

14.4  62  4  6.7  12.9  0  0 
62.0
% 

soybeans
‐no till 

14  4  63.9  13.2  4  0.9  0 
63.9
% 

soybeans
‐min till 

23.4  12.1  21.5  27.9  13.5  1.6  0 
27.9
% 

soybeans
‐clean till 

3.8  14.6  0.9  0.9  79.4  0.4  0 
79.4
% 

grass/ 
trees 

0  0  0.3  0  0.1  98.2  1.4 
98.2
% 

woods  0  0  0  0  0  1.8  98.2 
98.2
% 

 

53.5
% 

60.9
% 

62.4%  48.1%  70.0% 
95.1
% 

98.6
% 

70.5
% 

C. Uniform Partitioning with only spectral features used for classification. 
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Table 4.1 (continued) 

 
corn‐
no till 

corn‐
min till 

soybeans‐
no till 

soybeans‐
min till 

soybeans‐
clean till 

grass/ 
trees 

woods 
 

corn‐no 
till 

53.8  17.7  10.3  12.1  4.7  0.8  0.6 
53.8
% 

corn‐min 
till 

11.2  69.5  3.8  9.1  6.2  0.2  0 
69.5
% 

soybeans
‐no till 

14.3  9.4  53.3  16.6  4.8  1.5  0.1 
53.3
% 

soybeans
‐min till 

19  22  16.8  30.7  9.9  1.4  0.2 
30.7
% 

soybeans
‐clean till 

8.4  20.4  2.3  3.3  64.9  0.6  0.1 
64.9
% 

grass/ 
trees 

0.2  0  0.2  0  0  98.7  0.9 
98.7
% 

woods  0  0  0  0  0  1.5  98.5 
98.5
% 

 

50.7
% 

50.8
% 

62.2%  42.5%  72.3% 
94.3
% 

98.1
% 

67.0
% 

D. Spectral correlation with only spectral features used for classification. 

 

A close examination of the confusion matrices reveals that the most difficult class 

is the soybeans with minimum till. Even using the best technique, the producer accuracy 

of this class was 49%, which the only of seven classes that had a producer accuracy of 

less than 70%. This class is significantly confused with the corn and soybean classes. 

Most likely this is because the image was taken very early in the growing season, so the 

crops are just emerging from the soil. Thus, in the corn and soybeans, the spectral 

signatures contain a great deal of soil. The soybean min-till is confused the most with the 

soybean no-till class followed by the corn no-till class. It is expected that soybean min-till 

should be confused the most with the other soybean classes because they both contain the 
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same basic signatures: soybeans and soil (tilling the soil does change its spectral 

signature, so this is not exactly the same). However, the soybean clean-till class is 

confused less with soybean min-till than either corn class. There are likely two reasons 

for this trend. First, the soybean clean-till is the least confused of all the corn and soybean 

classes because it is likely that the clean till in the field has the most significant impact on 

the spectral reflectance of the field no matter what the crop is at this early point in the 

growing season. Second, since there is likely some spatial correlation in the soil, 

proximity might influence confusion. The distances between the fields of soybean min-

till and soybean clean-till are greater than the distances between fields containing 

soybean min-till and the corn classes. There is even a plot of corn no-till that boarders a 

soybean min-till field. This might also explain why corn no-till is more confused with 

soybean min-till than corn min-till. The accuracy of soybean min-till was the main thing 

that separated the good classifiers. Using the uniform partitioning, an accuracy of 27.9% 

was achieved, and using the spectral correlation band grouping, an accuracy of 30.7% 

was achieved. Both of these accuracies were well below the worst accuracy for a spatial-

spectral technique, which was 36.4%, and even this accuracy is atypical for the spatial-

spectral techniques because the mean accuracy for the soybean min-till class was 43.3%. 

4.5.3 Pecan 1 Data Set Results 

 The Pecan 1 data set was captured in the summer of 2008 at a Mississippi State 

University experiment station near Brooksville, Mississippi. It was part of a series of 

experiments that determined the detection capabilities of herbicide drift in corn and 

wheat. The field the data used in this experiment was a corn field next to a pecan tree 

grove, and thus is often referred to a "Pecan 1" even though the experiment was done on 
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corn. The chemical herbicide used in the experiment was called glyphosate, which is the 

active ingredient in the herbicide called "Roundup." In typical herbicide drift scenarios 

either wind (if applied on a windy day) or water (if applied on a rainy day) will carry the 

herbicide from the intended target toward unintended plants. In a typical herbicide drift 

situation, the concentration of the chemical falls off with distance from the intended spray 

area. Figure 4.6a shows the typical dispersal pattern for a windblown herbicide drift 

event. However, in the interest of accounting for differences in fertility of agricultural 

fields, the corn field was sprayed in the pattern shown in figure 4.6b. 

 
A                                              B 

Figure 4.6 Simulated wind driven herbicide drift and spray pattern used on one third 
of Pecan 1 

 

 Hyperspectral data was collected from the field using two primary sources. The 

first source was the use of a handheld hyperspectral sensor that was deployed on a tractor 

driven through the corn field. The handheld sensor collected 2151 spectral samples in the 

range from 300 - 2500 nm, and was mounted on the tractor so that the sensor was aimed 

at the canopy of the corn where the shadow from the tractor would be minimized (see 
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figure 4.7). Though the handheld hyperspectral data was not used in this particular 

experiment, the tractor was also equipped with a differential GPS that was accurate down 

to a few centimeters, which was later used along with the notes taken by the researchers 

to identify the ground truth in the airborne imagery. The airborne imagery was collected 

by a ProSPecTIR-VNIR system  with a spectral range of 400-994 nm spectral range. In 

this range, 128 spectral samples were collected with a spatial resolution of 1 m. Figure 

4.5 shows a true color image of the corn field where the study was conducted. 

 

Figure 4.7 Image of collection of handheld hyperspectral data mounted on a tractor.  

The sensor is mounted at the end of the white boom deployed to the left of the tractor to 
avoid the shadow of the tractor influencing the data. 

 The general trends for the Pecan 1 data set were very similar to the results 

obtained from the Indian Pines data set. As with the Indian Pines data set, the best overall 

classification accuracy was obtained using both the spatial and spectral features 

independently in their own groups. This technique was able to obtain a maximum overall 

accuracy of 78.77% when 7x7 ROI was used (see table 4.2). Using the uniform 
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partitioning, the overall accuracy was much lower at 63.91%, while using the spectral 

correlation technique produced an overall accuracy of 60.09%. 

 The results suggest that using a larger ROI may improve the results further, but 

this was not tested since the areas that contained the same spray rate were approximately 

4 to 5 pixels wide and bordered areas with different spray rates. Thus, if the ROI is 

increased further, the adjacent areas would begin to influence the spatial feature used in 

band grouping. While this may not be a problem for the band grouping algorithm, it may 

mean algorithms that use the spatial features in the classification also may be influenced 

by spatially adjacent classes. The results also imply that unlike the Indian Pines data set, 

the spatial features are better than the spectral features for overall accuracy in the Pecan 1 

data set. This is apparent because the mean overall accuracy when only the spectral 

features were used for classification was 66.57%, while the mean overall accuracy when 

only the spatial features were used for classification was 73.58%. However, the overall 

accuracy does not tell the whole story. There were classes that spectral features yielded 

better results, and features that spatial features yielded better results. The first 3 classes 

illustrate this well. In the first class, which was the control spray rate (no herbicide), the 

spectral only results were on average 72.9% accurate, but the spatial only results were on 

average 49.4% accurate. This means that the spectral features are clearly better for the 

control class. However, the classes with 1/32 and 1/16 concentrations of herbicide did 

much better with spatial features. On average, the spectral only algorithm resulted in a 

53.17% producer classification accuracy for the 1/32 concentration class, and 41.87% 

producer classification accuracy for the 1/16 concentration class. The spatial only 

algorithm did much better at 79.00% for the 1/32 concentration and 100.00% (it never 
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made an error in a total of 30 different tests using 3 different ROI sizes) for the 1/16 

concentration.  These results help explain why the combined use of spectral feature 

groups and spatial feature groups in a multi-classifier setup is advantageous. 

Table 4.2 Confusion matrices for the Pecan 1 dataset.  

Glufosinate Mixture  0  1/32  1/16  1/8  1/4  1/2  1 
 

0  55.6  33.8  4.2  4.3  1.6  0.3  0.2  55.6% 

1/32  3.8  83  0  9.2  2.7  1  0.3  83.0% 

1/16  0  0  100  0  0  0  0  100.0%

1/8  4.9  18.7  0  71.2  4  1.1  0.1  71.2% 

¼  0.8  1.7  0  5.5  82.5  7.9  1.6  82.5% 

½  0  0.1  0  0  9.2  70.4  20.3  70.4% 

1  0  0  0  0  0.9  18.6  80.5  80.5% 

86.1%  60.5% 96.0% 79.0% 81.9% 71.2%  78.4%  77.6% 

A. 7x7 entropy spatial feature for clustering with only spectral features used for 
classification. 

Glufosinate Mixture  0  1/32  1/16  1/8  1/4  1/2  1 
 

0  63.6  27.6  2.5  3.4  2.2  0.1  0.6  63.6%

1/32  8  78.5  2.6  6.8  2.5  0.8  0.8  78.5%

1/16  0.4  0.4  99.2  0  0  0  0  99.2%

1/8  3.2  16.7  2.4  72  5  0.3  0.4  72.0%

1/4  0.3  0.7  0.1  4.6  85  6.7  2.6  85.0%

1/2  0.2  0  0  0  10.6  70.9  18.3  70.9%

1  0  0  0  0  0.1  17.7  82.2  82.2%

84.1% 63.5% 92.9% 83.1% 80.7% 73.5%  78.7%  78.8%
B. 7x7 entropy spatial feature for clustering with spatial and spectral features used in 

independent groups for classification. 
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Table 4.2 (continued) 
 

Glufosinate Mixture  0  1/32  1/16  1/8  1/4  1/2  1 

0  72.2  16.5  7.6  1.1  2  0.4  0.2  72.2%

1/32  19.6  48.3  21.5  6.1  3  1  0.5  48.3% 

1/16  10.9  24.6  47.6  11.9  3.8  1.2  0  47.6% 

1/8  7.3  11.5  16  58.1  6.3  0.7  0.1  58.1%

¼  1.4  0.9  1.8  7.7  77.7  7.6  2.9  77.7%

½  0.1  0  0  0  9.6  64.4  25.9  64.4%

1  0  0  0  0  1.5  19.4  79.1  79.1%

65.2% 47.4% 50.5% 68.7% 74.9% 68.4%  72.8%  63.9%
C. Uniform Partitioning with only spectral features used for classification. 

Glufosinate Mixture  0  1/32  1/16  1/8  1/4  1/2  1 

0  74.6  13.9  5  3.1  2  0.2  1.2  74.6%

1/32  21.1  53.2  13.4  4.8  3.8  0.5  3.2  53.2%

1/16  13.1  33.8  26.9  17.8  4.4  1.8  2.2  26.9%

1/8  13  11.9  7.4  61.7  4.2  0.9  0.9  61.7% 

¼  0.4  2.2  5.4  10.2  69.4  6.4  6  69.4%

½  0  0.3  0.8  0  13.4  58.1  27.4  58.1%

1  0  0.1  0.4  0  3.9  18.9  76.7  76.7%

61.2% 46.4% 46.1% 64.2% 69.1% 67.1%  65.6%  60.1%
D. Spectral correlation with only spectral features used for classification. 

The matrices were computed using maximum likelihood classification, majority vote 
decision fusion, and 100 training samples per class. 

 A separate study done by the authors focused on determining how soon after the 

herbicide drift event the herbicide could be detected in the corn using the handheld 

hyperspectral data. In this study, the hyperspectral data was collected  1, 4, 8, and 14 days 

after the herbicide was sprayed on the corn. It happens that the imagery was also 

collected on day 8 (a fact that can be verified by the presence of the white trucks parked 

partially under a pecan tree in the full SpecTIR image). The results of the handheld study 

are presented in table 4.3 for comparison purposes. Upon comparison of the results from 

day 8, it becomes immediately apparent that the total accuracy shows a very significant 
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improvement over all other techniques when using Spatial-Spectral Band Grouping. One 

trend that has become apparent after many studies on the handheld data and imagery is 

that the imagery usually produces better results. This may be due to the time it takes to 

collect the handheld data, which is approximately 5 hours. Although white references 

were taken regularly every few minutes, there is likely more atmospheric variation 

uncompensated for in the handheld data since the imagery of the whole field was 

collected in just a few seconds, which leaves less time for atmospheric variation. 

Fortunately, three of the experiments were repeated for the imagery thus can be compared 

directly to the results from this study. The experiments that were repeated are Principal 

Component Analysis (PCA) with a single classifier (15% overall classification accuracy), 

SLDA with a single classifier (60% overall classification accuracy), and Supervised 

Discrete Wavelet Transform - Multi-Classifier Decision Fusion (DWT - MCDF) (65% 

overall classification accuracy). Thus, even when comparing Spatial-Spectral Band 

Grouping to other techniques using the hyperspectral imagery, a significant improvement 

in overall accuracy is observed. 

Table 4.3 Total accuracy for several techniques using hyperspectral handheld data.  

# Days 
After 

Treatment 

PCA 
Single 

Classifier 

Unsupervised 
Band Grouping 
Single Classifier 

Unsupervised 
Band Grouping 

MCDF 

SLDA 
Single 

Classifier 

Supervised 
Band 

Grouping 
Single 

Classifier 

Supervised 
MCDF 

Supervised 
DWT‐MCDF 

1 11% 12% 21% 13% 19% 32% 36% 

4 14% 14% 28% 14% 27% 39% 42% 

8 13% 14% 32% 17% 33% 50% 52% 

14 14% 17% 44% 20% 41% 61% 64% 
Day 8 is highlighted because it corresponds to the date of the SpecTIR imagery. 
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4.6 Conclusion 

 This work describes a newly developed spatial-spectral band grouping technique, 

and presents two different strategies for its use. Spatial-spectral band grouping (as with 

other types of band grouping) can be utilized with a single or multiple classifiers. In the 

single classifier approach, dimensionality reduction is used to reduce the number of 

features in each group and then a single classifier makes a decision based on the 

combined set of reduced features. In the multi-classifier approach, the features of each 

spectral band group are processed with an individual classifier, and then the decisions of 

the classifiers are fused. The results of the single classifier approach show the necessity 

of using a more advanced method of reducing the dimensionality of the groups than 

simply averaging them. It may perhaps be more advantageous to use some sort of linear 

combination of the features such as LDA, PCA, or a kernel-based approach, or use a 

multi-classifier approach. The multi-classifier approach examples demonstrate that 

spatial-spectral band grouping is advantageous and significantly outperforms spectral 

only band grouping. 

 The methods were quantitatively assessed by comparing the overall classification 

accuracy to several different techniques on the same data. Spatial-Spectral Band 

Grouping shows a significant increase in overall classification accuracy over all the other 

techniques. 
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CHAPTER V 

CONCLUSIONS 

This dissertation developed two new digital image processing methods for 

hyperdimensional imagery and tested them on natural remotely sensed Earth images and 

medical images. The hyperdimensionality of the imagery was either due to the sensor 

used in capturing the image or derived from an image via preprocessing and feature 

extraction. 

In chapter 3, the hyperdimensionality was derived from synthetic aperture radar 

images of the Mississippi River levee system and digital mammography images.  The 

techniques used for the levee system were developed from the techniques used in the 

mammography example. As in the mammography example, the new techniques improve 

target recognition. Furthermore, the new techniques demonstrate the omni-directional 

property as predicted. The new methods also have the advantage that they can be used 

without a segmentation algorithm because they are based on the concept of extracting 

circular regions of a predetermined radius. This is different from the standard gray level 

co-occurrence matrix (GLCM) process, where rectangular regions are always extracted. 

Once a circular region is extracted, it is resampled radially in order to create a rectangular 

region, which the standard GLCM can be computed from. Since this new method 

computes a GLCM, many different features can then be derived from it. Thus, the new 

features are omni-directional versions of the standard types and will respond to textural 
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patterns regardless of their directional components. This was shown to be useful in cases 

where the directional components of the texture had an unknown or unpredictable 

direction, or the direction was not constant throughout the image. 

The fourth chapter developed and tested a new method that uses spatial and 

spectral information in a hyperspectral image concurrently. This new technique uses 

spatial information in each spectral band to group similar bands together. The new 

technique was tested on agricultural hyperspectral images in automated classification 

systems that use a single classifier or multiple classifiers with decision fusion. The new 

spatial-spectral band grouping technique was compared to standard spectral only band 

grouping techniques such as uniform partitioning and spectral correlation. The 

experiments show that for a single classifier where bands within groups are averaged 

together, the new method does improve classification accuracy over spectral correlation. 

However, when multiple classifiers are used with decision fusion, the classification 

accuracy improves significantly over both standard techniques. 
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